
ON FINDING OPTIMAL QUANTUM QUERY

ALGORITHMS USING NUMERICAL OPTIMIZATION

Laura Mančinska, Māris Ozols

Institute of Mathematics and Computer Science,
University of Latvia, 29 Rainis Boulevard, Riga LV-1459, Latvia

We propose a method how to construct a quantum query algorithm for the given

Boolean function. This method is based on numerical optimization. We apply it to

all 3 and 4 argument Boolean functions, to find the functions with quantum query

complexity smaller than the deterministic one. We also show that a given query

algorithm constructed for some particular function can be modified to compute

other Boolean functions.

1. QUANTUM QUERY ALGORITHMS

A query algorithm computes Boolean function f(x1, x2, . . . , xn) by querying its argu-
ments xi ∈ {0, 1}. The complexity of query algorithm is the number of queries made to
determine the value of f . A quantum query algorithm queries all arguments in a super-
position [1]. This is achieved by applying an oracle matrix that is a function of input
variables. We consider the following type of oracle matrices:

O(~x) =

(−1)x1 0 . . . 0
0 (−1)x2 . . . 0
...

...
. . .

...
0 0 . . . (−1)xn

, (1)

where ~x = (x1, x2, . . . , xn) ∈ {0, 1}n is the input that is queried. Quantum query algorithm

is a sequence of unitary transformations:

Q(~x) = Um ·O(~x) · Um−1 · . . . · U1 ·O(~x) · U0, (2)

where Ui’s are arbitrary unitary matrices (thereforeQ is also unitary). The final amplitude
distribution for input ~x is

|ψ(~x)〉 = Q(~x) |0〉 . (3)

2. GENERAL n× n UNITARY MATRIX

One can use the Givens rotations [2] to find a diagonal form D (dkl = δkle
iϕk) of any

unitary matrix U

D = U ·

n−1
∏

i=1

n
∏

j=i+1

Gij. (4)

Givens rotation Gij is an n×n identity matrix modified at positions (i, i), (i, j), (j, i) and
(j, j). General Givens rotation is determined by a general 2 × 2 unitary matrix:

(

gii gij

gji gjj

)

=

(

ei(δ+σ+τ) cos θ ei(δ+σ−τ) sin θ
−ei(δ−σ+τ) sin θ ei(δ−σ−τ) cos θ

)

, (5)

where δ, σ, τ, θ ∈ R and gii, gij, gji, and gjj are the corresponding elements of matrix
Gij. If we multiply (4) from the right had side by the adjoints of Gij, we obtain a
formula for a general n× n unitary matrix U . To specify it, we need n parameters ϕk for
the diagonal matrix D and n(n − 1)/2 quadruplets (δ, σ, τ, θ) for matrices Gij. In total
n+ 4n(n− 1)/2 = 2n2 − n ≈ 2n2 parameters.

3. GENERAL QUANTUM QUERY ALGORITHM

If we replace Ui’s in (2) with independent general unitary matrices (each matrix has
its own parameters), we obtain a general quantum query algorithm Q with m queries.
There are m+ 1 matrices Ui therefore (2n2 − n)(m+ 1) ≈ 2mn2 parameters are required
to specify Q.

The result of computation is obtained by measuring the state |ψ(~x)〉 given by (3) in
some basis B. In order to obtain only 0 or 1 in the output, we divide the basis vectors
of B into two parts B0 and B1. Without the loss of generality we can assume that the
measurement is performed in the standard basis and B0 consists of the first b vectors of
the standard basis.

4. FINDING AN OPTIMAL ALGORITHM

By varying b (1 ≤ b ≤ n − 1) and m (1 ≤ m ≤ n − 1) one obtains different query
algorithm templates (the case m ≥ n is not interesting, as the deterministic complexity
does not exceed n). For each template one must perform a numerical optimization to find
the best algorithm of this form.

Definition. Query algorithm computes a Boolean function f with probability P , if for
each input ~x it returns the correct value of f(~x) with probability at least P . P is the

worst case success probability.

The best algorithm is obtained by maximizing the worst case success probability. We
say that the quantum query algorithm has an advantage over the deterministic one for a
particular function, if m < n and P > 1/2.

5. NPN-EQUIVALENCE

We observed that similar Boolean functions can be computed with similar query algo-
rithms. For example, if an algorithm for function f is available, it is not hard to compute
the negation of f . The same stands for functions f(x1, x2) and f(x2, x1). The notion of
similarity can be made formal and is called NPN-equivalence [3–5]. The idea is to use
simple logic gates to transform one Boolean function to other.

Definition. The following logic gates are called trivial gates :

• NOT - negation,

• ID - identity transformation,

n 0 1 2 3 4 5
F (n) 1 1 2 10 208 615 904
22n

2 4 16 256 65 536 4 294 967 296

Table 1: The number of NPN-equivalence classes of Boolean functions of exactly n vari-
ables F (n) compared to the number of all Boolean functions.

• NOTi - negation of i-th argument,

• SWAPij - swapping of i-th and j-th arguments.

Definition. Two Boolean functions f and g are NPN-equal if a circuit for f can be made
out of trivial gates and a circuit for g.

Example. Boolean functions f(x1, x2) = x1 ∨ x2 and g(x1, x2) = x2 ∧ x1 are NPN-equal,
because f = SWAP12 ◦NOT2 ◦NOT1 ◦g ◦ NOT.

Lemma. The NPN-equivalence of Boolean functions is equivalence relation (reflexive,
symmetric, transitive).

Theorem. All NPN-equal Boolean functions have the same quantum query complexity
and a quantum query algorithm, that is designed for one of these functions, with slight
modifications can be used for others.

It means that in order to have a full set of query algorithms for all n-argument boolean
functions one has to construct only an algorithm for each of the equivalence classes. We are
interested only in Boolean functions with exactly n variables - it means that the functions
depends on all variables (for example, f(x1, x2) = x1 does not). Let us denote the number
of NPN-equivalence classes of such functions by F (n). It is significantly smaller than the
total number of all n-argument Boolean functions (see Table 1 for comparison). F (n)
corresponds to Sloane’s A001528.

6. RESULTS

We computed representatives for all NPN-equivalence classes of three and four argu-
ment Boolean functions and applied the method described in Section 4 to them. In case
of three argument functions we found one NPN-equivalence class for which the quantum
query complexity is smaller than the deterministic one:

f = x1 ⇔ x2 ⇔ x3. (6)

Among four argument functions we found seven such classes:

f1 =x1 ⊕ x2 ⊕ x3 ⊕ x4,

f2 =(!x1 ∧ !x2 ∧ x3 ∧ x4) ∨ (!x1 ∧ x2 ∧ ! x3 ∧ x4) ∨ (!x1 ∧ x2 ∧ x3 ∧ ! x4)∨

(x1 ∧ ! x2 ∧ !x3 ∧ x4) ∨ (x1 ∧ ! x2 ∧ x3 ∧ ! x4) ∨ (x1 ∧ x2 ∧ ! x3 ∧ ! x4),

f3 =x1 ⇔ x2 ⇔ x3 ⇔ x4,

f4 =(x1 ⇔ x2 ⇔ x3) ∨ (!x1 ∧ x3 ∧ x4) ∨ (x1 ∧ ! x3 ∧ !x4),

f5 =(x1 ⇔ x2 ⇔ x3 ⇔ x4) ∨ (!x1 ∧ ! x2 ∧ x3 ∧ x4) ∨ (x1 ∧ x2 ∧ !x3 ∧ ! x4),

f6 =(x1 ⇔ x2 ⇔ x3) ∨ (x1 ⇔ x2 ⇔ x4) ∨ (x1 ⇔ x3 ⇔ x4),

f7 =(x1 ⇔ x2) ∨ (x1 ∧ x3 ∧ x4) ∨ (x2 ∧ ! x3 ∧ !x4).

REFERENCES

[1] Ronald de Wolf, Quantum Computing and Communication Complexity, Institute for
Logic, Language and Computation (2001).

[2] George Cybenko, Reducing Quantum Computations to Elementary Unitary Opera-

tions, Computing in Science & Engineering, 3 (2001), N27, pp. 27-32.

[3] Zeljko Zilic, Zvonko Vranesic, Using BDDs to Design ULMs for FPGAs, Proc. 4th
International Symposium on FPGAs, Monterey CA, Feb. 1996, pp. 97–103.

[4] Anas Al-Rabadi, Martin Zwick, Enhancements to Crisp Possibilistic Reconstructabil-

ity Analysis, International Journal of General Systems, August 2004, Vol. 33 (4), pp.
361-382.

[5] Jerry Chih-Yuan Yang, Giovanni De Micheli, Spectral Techniques for Technology

Mapping, Stanford University, Stanford, CA, USA (1994).

